潘云虎, 李飞, 陈江红, 张申伟, 郭文怡. 脉冲电磁场对糖尿病大鼠急性下肢缺血模型血管再生的作用[J]. 心脏杂志, 2010, 22(3): 338-343.
    引用本文: 潘云虎, 李飞, 陈江红, 张申伟, 郭文怡. 脉冲电磁场对糖尿病大鼠急性下肢缺血模型血管再生的作用[J]. 心脏杂志, 2010, 22(3): 338-343.
    Effects of pulsed electromagnetic fields on acute hindlimb ischemic diabetic rats in microcirculation angiogenesis[J]. Chinese Heart Journal, 2010, 22(3): 338-343.
    Citation: Effects of pulsed electromagnetic fields on acute hindlimb ischemic diabetic rats in microcirculation angiogenesis[J]. Chinese Heart Journal, 2010, 22(3): 338-343.

    脉冲电磁场对糖尿病大鼠急性下肢缺血模型血管再生的作用

    Effects of pulsed electromagnetic fields on acute hindlimb ischemic diabetic rats in microcirculation angiogenesis

    • 摘要: 目的: 探讨脉冲电磁场(PEMF)对糖尿病大鼠急性下肢缺血模型血管再生的作用。方法: 60只SD大鼠按照60 mg/kg腹腔注射链脲菌素(STZ),建立糖尿病大鼠模型后,再根据文献Kawasaki等[2]的方法建立大鼠急性下肢缺血模型,并随机分为实验组和对照组,每组30只。实验组术后第1天,即给予PEMF治疗(每天2 h,共28 d),对照组不做任何处理。于术后当天及术后7、14、28 d,运用激光多普勒技术检测血流。并在术后7、14、28 d处死动物(每组每次处死10只),分离缺血后肢的肌肉,采用免疫组织化染色法检测CD31的表达;采用Western-blot法检测VEGF、FGF-2、VEGFR2、FGFR1、ERK1/2、P-ERK1/2、P38及P-P38的表达。结果: 激光多普勒检查显示,实验组在术后14、28 d,血流的恢复(0.64±0.02、0.85±0.02)明显高于对照组(0.48±0.02、0.61±0.02,P<0.01)。实验组术后14、28 d,CD31的表达(677.4±15.6)/mm2和(837.2±25.6)/mm2明显高于对照组(495.2±25.3)/mm2和(619.4±19.2)/mm2(P<0.01)。Western blot法检测在各个时间段的FGF-2和FGFR1的表达实验组均高于对照组(P<0.05);而VEGF及其受体的表达无明显差异。实验组P-ERK1/2与T-ERK1/2的比值在各个时间段均高于对照组(P<0.05),两组P-P38与T-P38的比值无显著性差异。结论: PEMF可促进糖尿病大鼠急性下肢缺血的血管新生,机制可能为通过刺激血管内皮细胞释放FGF-2,并与ERK1/2有关,因ERK1/2是FGF-2促进血管增生的重要信号转导途径。

       

      Abstract: AIM: To observe the effects of pulsed electromagnetic fields (PEMF) on acute hindlimb ischemic diabetic rats in microcirculation angiogenesis. METHODS: Sixty male Sprague Dawley diabetic rats were randomly divided into experimental group (n=30)and control group (n=30) and acute hindlimb ischemia models were established in all rats. After operation, rats in the experimental group were exposed to PEMFs for 2 h each day, whereas rats in the control group were not given any treatment. Laser-Doppler perfusion measurements were used to determine the blood flow of hindlimb ischemia on postoperative days0, 7, 14 and 28, and immunohistochemical analysis of CD31 was used to evaluate the changes in angiogenesis. Levels of VEGF, FGF-2, VEGFR2, FGFR1, ERK1/2, P-ERK1/2, P38 and P-P38 levels were determined by Western blot analysis in ischemic skeletal muscle on postoperative days 7, 14 and 28. RESULTS: Perfusion ratios were significantly higher in PEMF-treated diabetic rats at days 14 and 28 compared with controls (0.64±0.02 vs.0.48±0.02, P<0.01); (0.85±0.02 vs.0.61±0.02, P<0.01). CD31 density in tissues measured by immunohistochemistry significantly increased in PEMF-treated groups on days 14 and 28 [(677.4±15.6) vs.(495.2±25.3)/mm2, P<0.01; (837.2±25.6) vs.(619.4±19.2)/mm2, P<0.01]. Levels of FGF-2 and FGFR1 in ischemic hindlimbs significantly increased in PEMF group at all timepoints, as well as p-ERK1/2 and total ERK1/2. No significant differences were observed in VEGF, VEGFR2 and p-p38/total p38 between groups. CONCLUSION: PEMFs promote angiogenesis in diabetes by upregulation of FGF-2. As an indispensable signal pathway for FGF2-induced angiogenesis, ERK is responsible for coupling FGFR1 to multiple downstream pathways to mediate blood vessel formation. PEMFs can be used in the prevention and treatment of lower limb ischemia in diabetic patients.

       

    /

    返回文章
    返回