高蓓蕾, 张国勇, 余文军, 黎翔, 林晨, 王婷婷, 张英梅. Parkin介导的线粒体自噬在高糖高脂导致的心肌细胞损伤中的保护作用[J]. 心脏杂志, 2017, 29(4): 382-388. DOI: 10.13191/j.chj.2017.0099
    引用本文: 高蓓蕾, 张国勇, 余文军, 黎翔, 林晨, 王婷婷, 张英梅. Parkin介导的线粒体自噬在高糖高脂导致的心肌细胞损伤中的保护作用[J]. 心脏杂志, 2017, 29(4): 382-388. DOI: 10.13191/j.chj.2017.0099
    GAO Bei-lei, ZHANG Guo-yong, YU Wen-jun, LI Xiang, LIN Chen, WANG Ting-ting, ZHANG Ying-mei. Protective role of Parkin-mediated mitophagy in cardiomyocyte injury induced by high glucose and high fat[J]. Chinese Heart Journal, 2017, 29(4): 382-388. DOI: 10.13191/j.chj.2017.0099
    Citation: GAO Bei-lei, ZHANG Guo-yong, YU Wen-jun, LI Xiang, LIN Chen, WANG Ting-ting, ZHANG Ying-mei. Protective role of Parkin-mediated mitophagy in cardiomyocyte injury induced by high glucose and high fat[J]. Chinese Heart Journal, 2017, 29(4): 382-388. DOI: 10.13191/j.chj.2017.0099

    Parkin介导的线粒体自噬在高糖高脂导致的心肌细胞损伤中的保护作用

    Protective role of Parkin-mediated mitophagy in cardiomyocyte injury induced by high glucose and high fat

    • 摘要: 目的 明确Parkin(一种E3泛素化连接酶)介导的线粒体自噬对高糖高脂导致的原代心肌细胞损伤的保护作用。 方法 以LV-lacZ(LacZ空病毒)或LV-Parkin(Parkin过表达慢病毒)转染SD大鼠原代心肌细胞48 h,再用含葡萄糖(5.5 mmol/L NG)的培养基或含棕榈酸盐(500 μmol/L HF)和葡萄糖(25 mmol/L HG)的高糖高脂培养基培养心肌细胞24 h。 实验分组:①阴性对照组(NG-LacZ),②正常Parkin过表达组(NG-Parkin),③高糖高脂阴性对照组(HG-HF-LacZ),④高糖高脂Parkin过表达组(HG-HF-Parkin)。用Western blot法检测PTEN介导的假定激酶蛋白1(PINK1)、Parkin、P62(一种自噬相关蛋白)、微管相关蛋白1轻链3(LC3)蛋白表达水平。采用JC-1染色法检测活细胞内线粒体膜电位水平。免疫荧光法检测自噬体数量,TUNEL法检测细胞凋亡率。 结果 与对照组相比,高糖高脂处理的原代心肌细胞自噬相关蛋白LC3-Ⅱ,P62表达水平上调(P<0.05),PINK1表达未发生统计学差异,Parkin表达水平下调(P<0.05),自噬体数量增多,线粒体膜电位下降功能损伤,心肌细胞凋亡率升高(P<0.05)。而用高糖高脂处理LV-Parkin转染的心肌细胞,LC3-Ⅱ蛋白表达水平进一步升高(P<0.05),而P62表达水平显著下降(P<0.05),自噬体数量进一步增多,细胞内线粒体膜电位水平上升,心肌细胞凋亡率下降(P<0.05)。 结论 高糖高脂可引起SD大鼠原代心肌细胞自噬流量降低,自噬小体增多,线粒体自噬发生障碍。Parkin过表达慢病毒通过激活心肌细胞内线粒体自噬途径,提高自噬流量,改善线粒体功能,降低心肌细胞凋亡率。

       

      Abstract: AIM To determine the role of Parkin-mediated mitophagy in cardiomyocytes exposed to high glucose and saturated fatty acid stimulation. METHODS Neonatal mouse ventricular myocytes were separated and cultured in DMEM with normal (5.5 mmol/L) dose of glucose. LV-LacZ or LV-Parkin was transfected into cardiomyocytes. After transfected for 48 hrs, cardiomyocytes were cultured in DMEM with normal (5.5 mmol/L) or high dose of glucose (25 mmol/L HG) and palmitate (16:0; 500 μmol/L HF) for 24hrs. So we divided the experiment into four groups: ①NG-LacZ; ②NG-Parkin; ③HG-HF-LacZ; ④HG-HF-Parkin. The expression of proteins was analyzed by Western blot and the number of autophagosomes was counted by immunofluorescence. The mitochondrial membrane potential was measured by JC-1 staining and the apoptotic index was evaluated by TUNEL. RESULTS Compared with that in control group, mitophagy associated protein Parkin was significantly reduced by high glucose and high palmitate( P<0.05), suggesting that mitophagy might be reduced in this condition. The expression of LC3Ⅱ was significantly increased (P<0.05), indicating the accumulation of autophagosomes. Up-regulated P62 (P<0.05) suggested that HG and HF resulted in impaired clearance of autophagosomes. Compared with those in HG-HF group,,LV-Parkin up-regulated the expression of Parkin and LC3Ⅱ (P<0.05) and decreased the level of P62 significantly (P<0.05) following HG-HF treatment, indicating that Parkin over-expression enhanced mitophagy and autophagy flux. Parkin reduced the apoptosis (P<0.05) caused by high glucose and high plamitate in cardiomyocytes. CONCLUSION Parkin-mediated mitophagy plays a protective role in cardiomyocyte injury induced by high glucose and high palmitate.

       

    /

    返回文章
    返回