[1] |
Zimmet P, Alberti KG, Magliano DJ, et al. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies[J]. Nat Rev Endocrinol, 2016, 12(10): 616 – 622. doi: 10.1038/nrendo.2016.105
|
[2] |
Tan Y, Zhang Z, Zheng C, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence[J]. Nat Rev Cardiol, 2020, 17(9): 585 – 607. doi: 10.1038/s41569-020-0339-2
|
[3] |
Karwi QG, Ho KL, Pherwani S, et al. Concurrent diabetes and heart failure: interplay and novel therapeutic approaches[J]. Cardiovasc Res, 2022, 118(3): 686 – 715. doi: 10.1093/cvr/cvab120
|
[4] |
Wei J, Zhao Y, Liang H, et al. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy[J]. Acta Pharm Sin B, 2022, 12(1): 1 – 17. doi: 10.1016/j.apsb.2021.08.026
|
[5] |
Lyu W, Li Q, Wang Y, et al. Computational design of binder as the LC3-p62 protein-protein interaction[J]. Bioorg Chem, 2021, 115: 105241. doi: 10.1016/j.bioorg.2021.105241
|
[6] |
董禹辰, 杨 东, 郭建英, 等. 褪黑素通过激活Akt信号通路缓解高糖诱发的原代心肌细胞损伤[J]. 心脏杂志, 2020, 32(5): 461 – 465. doi: 10.12125/j.chj.202005052
|
[7] |
Dewanjee S, Vallamkondu J, Kalra RS, et al. Autophagy in the diabetic heart: a potential pharmacotherapeutic target in diabetic cardiomyopathy[J]. Ageing Res Rev, 2021, 68: 101338. doi: 10.1016/j.arr.2021.101338
|
[8] |
Li Q, Tan Y, Chen S, et al. Irisin alleviates LPS-induced liver injury and inflammation through inhibition of NLRP3 inflammasome and NF-kappaB signaling[J]. J Recept Signal Transduct Res, 2021, 41(3): 294 – 303. doi: 10.1080/10799893.2020.1808675
|
[9] |
Zhang X, Hu C, Kong CY, et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT[J]. Cell Death Differ, 2020, 27(2): 540 – 555. doi: 10.1038/s41418-019-0372-z
|
[10] |
Cao G, Yang C, Jin Z, et al. FNDC5/irisin reduces ferroptosis and improves mitochondrial dysfunction in hypoxic cardiomyocytes by Nrf2/HO-1 axis[J]. Cell Biol Int, 2022, 46(5): 723 – 736. doi: 10.1002/cbin.11763
|
[11] |
Chen RR, Fan XH, Chen G, et al. Irisin attenuates angiotensin II-induced cardiac fibrosis via Nrf2 mediated inhibition of ROS/ TGFβ1/Smad2/3 signaling axis[J]. Chem Biol Interact, 2019, 302: 11 – 21. doi: 10.1016/j.cbi.2019.01.031
|
[12] |
Wang FS, Kuo CW, Ko JY, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy[J]. Antioxidants (Basel), 2020, 9(9): 810. doi: 10.3390/antiox9090810
|
[13] |
Lu L, Ma J, Liu Y, et al. FSTL1-USP10-Notch1 signaling axis protects against cardiac dysfunction through inhibition of myocardial fibrosis in diabetic mice[J]. Front Cell Dev Biol, 2021, 9: 757068. doi: 10.3389/fcell.2021.757068
|
[14] |
Lorenzo-Almorós A, Tuñón J, Orejas M, et al. Diagnostic approaches for diabetic cardiomyopathy[J]. Cardiovasc Diabetol, 2017, 16(1): 28. doi: 10.1186/s12933-017-0506-x
|
[15] |
Lin C, Guo Y, Xia Y, et al. FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin αV/β5-AKT signaling and reduction of oxidative/nitrosative stress[J]. J Mol Cell Cardiol, 2021, 160: 27 – 41. doi: 10.1016/j.yjmcc.2021.06.013
|
[16] |
Xie S, Deng W, Chen J, et al. Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway[J]. Int J Biol Sci, 2020, 16(1): 12 – 26. doi: 10.7150/ijbs.37269
|
[17] |
Jiang Z, Bian M, Wu J, et al. Oltipraz prevents high glucose-induced oxidative stress and apoptosis in RSC96 cells through the Nrf2/NQO1 signaling pathway[J]. Biomed Res Int, 2020, 2020: 5939815. doi: 10.1155/2020/5939815
|
[18] |
Wu J, Yang Y, Gao Y, et al. Melatonin attenuates anoxia/reoxygenation injury by inhibiting excessive mitophagy through the MT2/SIRT3/FoxO3a signaling pathway in H9c2 cells[J]. Drug Des Devel Ther, 2020, 14: 2047 – 2060. doi: 10.2147/DDDT.S248628
|
[19] |
Salvatore T, Pafundi PC, Galiero R, et al. The diabetic cardiomyopathy: the contributing pathophysiological mechanisms[J]. Front Med (Lausanne), 2021, 8: 695792. doi: 10.3389/fmed.2021.695792
|
[20] |
Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease[J]. Circ Res, 2020, 126(11): 1501 – 1525. doi: 10.1161/CIRCRESAHA.120.315913
|
[21] |
Shimizu S, Yoshida T, Tsujioka M, et al. Autophagic cell death and cancer[J]. Int J Mol Sci, 2014, 15(2): 3145 – 3153. doi: 10.3390/ijms15023145
|
[22] |
Cha YE, Park R, Jang M, et al. 6-azauridine induces autophagy-mediated cell death via a p53- and AMPK-dependent pathway[J]. Int J Mol Sci, 2021, 22(6): 2947. doi: 10.3390/ijms22062947
|
[23] |
Li D, He C, Ye F, et al. p62 overexpression promotes bone metastasis of lung adenocarcinoma out of LC3-dependent autophagy[J]. Front Oncol, 2021, 11: 609548. doi: 10.3389/fonc.2021.609548
|
[24] |
Oh JY, Choi GE, Lee HJ, et al. 17β-estradiol protects mesenchymal stem cells against high glucose-induced mitochondrial oxidants production via Nrf2/Sirt3/MnSOD signaling[J]. Free Radic Biol Med, 2019, 130: 328 – 342. doi: 10.1016/j.freeradbiomed.2018.11.003
|
[25] |
吕云利, 刘吉耀, 孙喜庆. 线粒体自噬和内质网应激调控血管内皮细胞功能研究进展[J]. 心脏杂志, 2021, 33(3): 302 – 306. doi: 10.12125/j.chj.202103020
|
[26] |
Ma J, Chen K. The role of irisin in multiorgan protection[J]. Mol Biol Rep, 2021, 48(1): 763 – 772. doi: 10.1007/s11033-020-06067-1
|
[27] |
Dia M, Gomez L, Thibault H, et al. Reduced reticulum-mitochondria Ca(2+) transfer is an early and reversible trigger of mitochondrial dysfunctions in diabetic cardiomyopathy[J]. Basic Res Cardiol, 2020, 115(6): 74. doi: 10.1007/s00395-020-00835-7
|
[28] |
Kambis TN, Tofilau HMN, Gawargi FI, et al. Regulating polyamine metabolism by miRNAs in diabetic cardiomyopathy[J]. Curr Diab Rep, 2021, 21(12): 52. doi: 10.1007/s11892-021-01429-w
|
[29] |
Ouwens DM, Diamant M. Myocardial insulin action and the contribution of insulin resistance to the pathogenesis of diabetic cardiomyopathy[J]. Arch Physiol Biochem, 2007, 113(2): 76 – 86. doi: 10.1080/13813450701422633
|