• 中国科技核心期刊
  • 中文科技期刊数据库刊源
  • 中国科技论文统计源期刊
  • 美国化学文摘社《化学文摘》刊源

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NLRP3炎症小体抑制剂在心血管疾病应用中的研究进展

马明仁 陈俏梅 蔡晓庆 焦丕奇 王菲 马凌 宋佳 刘燕

马明仁, 陈俏梅, 蔡晓庆, 焦丕奇, 王菲, 马凌, 宋佳, 刘燕. NLRP3炎症小体抑制剂在心血管疾病应用中的研究进展[J]. 心脏杂志, 2023, 35(1): 88-93, 98. doi: 10.12125/j.chj.202204036
引用本文: 马明仁, 陈俏梅, 蔡晓庆, 焦丕奇, 王菲, 马凌, 宋佳, 刘燕. NLRP3炎症小体抑制剂在心血管疾病应用中的研究进展[J]. 心脏杂志, 2023, 35(1): 88-93, 98. doi: 10.12125/j.chj.202204036
Ming-Ren MA, Qiao-Mei CHEN, Xiao-Qing CAI, Pei-Qi JIAO, Fei WANG, Ling MA, Jia SONG, Yan LIU. Research progress of NLRP3 inflammasome inhibitors in cardiovascular diseases[J]. Chinese Heart Journal, 2023, 35(1): 88-93, 98. doi: 10.12125/j.chj.202204036
Citation: Ming-Ren MA, Qiao-Mei CHEN, Xiao-Qing CAI, Pei-Qi JIAO, Fei WANG, Ling MA, Jia SONG, Yan LIU. Research progress of NLRP3 inflammasome inhibitors in cardiovascular diseases[J]. Chinese Heart Journal, 2023, 35(1): 88-93, 98. doi: 10.12125/j.chj.202204036

NLRP3炎症小体抑制剂在心血管疾病应用中的研究进展

doi: 10.12125/j.chj.202204036
基金项目: 甘肃省自然科学基金项目(21JR1RA181)
详细信息
    作者简介:

    马明仁,主管技师,硕士 Email:84878163@qq.com

    宋佳,主管护师,学士Email:364859751@qq.com

    通讯作者:

    刘燕,副主任护师,主要从事心血管内科重症护理研究 Email:liuyan7863@sina.com

  • 中图分类号: R589

Research progress of NLRP3 inflammasome inhibitors in cardiovascular diseases

  • 摘要: NLRP3炎症小体是一类多聚蛋白复合物,可提供反应平台快速诱导对感染和无菌损伤的炎症反应。研究表明NLRP3炎症小体参与心血管事件发生发展,其抑制剂的研发已成为当前心血管疾病治疗领域研究热点。本文以NLRP3为切入点,总结NLRP3在心血管系统中激活机制、发挥的关键调控作用以及NLRP3炎症小体抑制剂最新研究进展,以期为NLRP3炎症小体为靶点的心血管疾病抗炎药物研发提供参考。

     

  • [1] Silvis MJM, Demkes EJ, Fiolet ATL, et al. Immunomodulation of the NLRP3 inflammasome in atherosclerosis, coronary artery disease, and acute myocardial infarction[J]. J Cardiovasc Transl Res, 2021, 14(1): 23 – 34. doi: 10.1007/s12265-020-10049-w
    [2] Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction[J]. Nat Rev Cardiol, 2018, 15(4): 203 – 214. doi: 10.1038/nrcardio.2017.161
    [3] Abbate A, Toldo S, Marchetti C, et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease[J]. Circ Res, 2020, 126(9): 1260 – 1280. doi: 10.1161/CIRCRESAHA.120.315937
    [4] Chong WC, Shastri MD, Peterson GM, et al. The complex interplay between endoplasmic reticulum stress and the NLRP3 inflammasome: a potential therapeutic target for inflammatory disorders[J]. Clin Transl Immunology, 2021, 10(2): e1247. doi: 10.1002/cti2.1247
    [5] Davidson SM, Adameová A, Barile L, et al. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury[J]. J Cell Mol Med, 2020, 24(7): 3795 – 3806. doi: 10.1111/jcmm.15127
    [6] Liao LZ, Chen ZC, Wang SS, et al. NLRP3 inflammasome activation contributes to the pathogenesis of cardiocytes aging[J]. Aging (Albany NY), 2021, 13(16): 20534 – 20551. doi: 10.18632/aging.203435
    [7] Mai W, Liao Y. Targeting IL-1β in the treatment of atherosclerosis[J]. Front Immunol, 2020, 11: 589654. doi: 10.3389/fimmu.2020.589654
    [8] Scott L Jr, Fender AC, Saljic A, et al. NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmias[J]. Cardiovasc Res, 2021, 117(7): 1746 – 1759. doi: 10.1093/cvr/cvab024
    [9] Zeng C, Duan F, Hu J, et al. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy[J]. Redox Biol, 2020, 34: 101523. doi: 10.1016/j.redox.2020.101523
    [10] Willeford A, Suetomi T, Nickle A, et al. CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis[J]. JCI Insight, 2018, 3(12): e97054. doi: 10.1172/jci.insight.97054
    [11] Ren XS, Tong Y, Ling L, et al. NLRP3 gene deletion attenuates angiotensin II-Induced phenotypic transformation of vascular smooth muscle cells and vascular remodeling[J]. Cell Physiol Biochem, 2017, 44(6): 2269 – 2280. doi: 10.1159/000486061
    [12] Guo L, Qin G, Cao Y, et al. Regulation of the immune microenvironment by an NLRP3 inhibitor contributes to attenuation of acute right ventricular failure in rats with pulmonary arterial hypertension[J]. J Inflamm Res, 2021, 14: 5699 – 5711. doi: 10.2147/JIR.S336964
    [13] Li X, Bian Y, Pang P, et al. Inhibition of Dectin-1 in mice ameliorates cardiac remodeling by suppressing NF-κB/NLRP3 signaling after myocardial infarction[J]. Int Immunopharmacol, 2020, 80: 106116. doi: 10.1016/j.intimp.2019.106116
    [14] Nguyen MN, Kiriazis H, Gao XM, et al. Cardiac fibrosis and arrhythmogenesis[J]. Compr Physiol, 2017, 7(3): 1009 – 1049. doi: 10.1002/cphy.c160046
    [15] Vong CT, Tseng HHL, Yao P, et al. Specific NLRP3 inflammasome inhibitors: promising therapeutic agents for inflammatory diseases[J]. Drug Discov Today, 2021, 26(6): 1394 – 1408. doi: 10.1016/j.drudis.2021.02.018
    [16] Wu D, Chen Y, Sun Y, et al. Target of MCC950 in inhibition of NLRP3 inflammasome activation: a literature review[J]. Inflammation, 2020, 43(1): 17 – 23. doi: 10.1007/s10753-019-01098-8
    [17] van der Heijden T, Kritikou E, Venema W, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report[J]. Arterioscler Thromb Vasc Biol, 2017, 37(8): 1457 – 1461. doi: 10.1161/ATVBAHA.117.309575
    [18] Gao R, Shi H, Chang S, et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction[J]. Int Immunopharmacol, 2019, 74: 105575. doi: 10.1016/j.intimp.2019.04.022
    [19] Cheng P, Yang G, Zhao X, et al. Precisely and efficiently enzyme response microspheres with immune removal escape loaded with MCC950 ameliorate cardiac dysfunction in acute myocardial infarction[J]. J Biomed Nanotechnol, 2020, 16(2): 153 – 165. doi: 10.1166/jbn.2020.2885
    [20] Ren P, Wu D, Appel R, et al. Targeting the NLRP3 inflammasome with inhibitor MCC950 prevents aortic aneurysms and dissections in mice[J]. J Am Heart Assoc, 2020, 9(7): e014044. doi: 10.1161/JAHA.119.014044
    [21] Zhang Y, Zhang S, Li B, et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome[J]. Cardiovasc Res, 2022, 118(3): 785 – 797. doi: 10.1093/cvr/cvab114
    [22] Fujisue K, Sugamura K, Kurokawa H, et al. Colchicine improves survival, left ventricular remodeling, and chronic cardiac function after acute myocardial infarction[J]. Circ J, 2017, 81(8): 1174 – 1182. doi: 10.1253/circj.CJ-16-0949
    [23] Ridker PM. From cantos to cirt to colcot to clinic: will all atherosclerosis patients soon be treated with combination lipid-lowering and inflammation-inhibiting agents?[J]. Circulation, 2020, 141(10): 787 – 789. doi: 10.1161/CIRCULATIONAHA.119.045256
    [24] Vaidya K, Arnott C, Martínez GJ, et al. Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study[J]. JACC Cardiovasc Imaging, 2018, 11(2 Pt 2): 305 – 316. doi: 10.1016/j.jcmg.2017.08.013
    [25] Andreotti F, Maggioni AP, Campeggi A, . Anti-inflammatory therapy in ischaemic heart disease: from canakinumab to colchicine[J]. Eur Heart J Suppl, 2021, 23(Suppl E): E13 – E18. doi: 10.1093/eurheartj/suab084
    [26] Marchetti C, Toldo S, Chojnacki J, et al. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse[J]. J Cardiovasc Pharmacol, 2015, 66(1): 1 – 8. doi: 10.1097/FJC.0000000000000247
    [27] Marchetti C, Chojnacki J, Toldo S, et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse[J]. J Cardiovasc Pharmacol, 2014, 63(4): 316 – 322. doi: 10.1097/FJC.0000000000000053
    [28] Toldo S, Marchetti C, Mauro AG, et al. Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse[J]. Int J Cardiol, 2016, 209: 215 – 220. doi: 10.1016/j.ijcard.2016.02.043
    [29] Lin HB, Wei GS, Li FX, et al. Macrophage-NLRP3 inflammasome activation exacerbates cardiac dysfunction after ischemic stroke in a mouse model of diabetes[J]. Neurosci Bull, 2020, 36(9): 1035 – 1045. doi: 10.1007/s12264-020-00544-0
    [30] Gao RF, Li X, Xiang HY, et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice[J]. Int Immunopharmacol, 2021, 90: 107133. doi: 10.1016/j.intimp.2020.107133
    [31] Sánchez-Fernández A, Skouras DB, Dinarello CA, et al. OLT1177 (Dapansutrile), a selective NLRP3 inflammasome inhibitor, ameliorates experimental autoimmune encephalomyelitis pathogenesis[J]. Front Immunol, 2019, 10: 2578. doi: 10.3389/fimmu.2019.02578
    [32] Lonnemann N, Hosseini S, Marchetti C, et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2020, 117(50): 32145 – 32154. doi: 10.1073/pnas.2009680117
    [33] Aliaga J, Bonaventura A, Mezzaroma E, et al. Preservation of contractile reserve and diastolic function by inhibiting the NLRP3 inflammasome with OLT1177®(Dapansutrile) in a mouse model of severe ischemic cardiomyopathy due to non-reperfused anterior wall myocardial infarction[J]. Molecules, 2021, 26(12): 3534. doi: 10.3390/molecules26123534
    [34] Toldo S, Mauro AG, Cutter Z, et al. The NLRP3 inflammasome inhibitor, OLT1177 (Dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse[J]. J Cardiovasc Pharmacol, 2019, 73(4): 215 – 222. doi: 10.1097/FJC.0000000000000658
    [35] Wohlford GF, Van Tassell BW, Billingsley HE, et al. Phase 1B, randomized, double-blinded, dose escalation, single-center, repeat dose safety and pharmacodynamics study of the oral NLRP3 inhibitor dapansutrile in subjects with NYHA II-III systolic heart failure[J]. J Cardiovasc Pharmacol, 2020, 77(1): 49 – 60. doi: 10.1097/FJC.0000000000000931
    [36] Yarmohammadi F, Hayes AW, Karimi G. The cardioprotective effects of hydrogen sulfide by targeting endoplasmic reticulum stress and the Nrf2 signaling pathway: a review[J]. Biofactors, 2021, 47(5): 701 – 712. doi: 10.1002/biof.1763
    [37] 何婷婷,张旭琳,贾珍丽,等. 硫化氢通过下调NLRP3/caspase-1信号通路抑制氧化型低密度脂蛋白诱导的血管内皮细胞焦亡[J]. 中国病理生理杂志, 2021, 37(10): 1738 – 1746. doi: 10.3969/j.issn.1000-4718.2021.10.002
    [38] Wang H, Shi X, Qiu M, et al. Hydrogen sulfide plays an important role by influencing NLRP3 inflammasome[J]. Int J Biol Sci, 2020, 16(14): 2752 – 2760. doi: 10.7150/ijbs.47595
    [39] Nguyen K, Chau VQ, Mauro AG, et al. Hydrogen sulfide therapy suppresses cofilin-2 and attenuates ischemic heart failure in a mouse model of myocardial infarction[J]. J Cardiovasc Pharmacol Ther, 2020, 25(5): 472 – 483. doi: 10.1177/1074248420923542
    [40] Peng S, Xu LW, Che XY, et al. Atorvastatin inhibits inflammatory response, attenuates lipid deposition, and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy[J]. Front Pharmacol, 2018, 9: 438. doi: 10.3389/fphar.2018.00438
    [41] Jia W, Bai T, Zeng J, et al. Combined administration of metformin and atorvastatin attenuates diabetic cardiomyopathy by inhibiting inflammation, apoptosis, and oxidative stress in type 2 diabetic mice[J]. Front Cell Dev Biol, 2021, 9: 634900. doi: 10.3389/fcell.2021.634900
    [42] Huang Y, Jiang H, Chen Y, et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases[J]. EMBO Mol Med, 2018, 10(4): e8689. doi: 10.15252/emmm.201708689
    [43] Chen S, Wang Y, Pan Y, et al. Novel role for tranilast in regulating NLRP3 ubiquitination, vascular inflammation, and atherosclerosis[J]. J Am Heart Assoc, 2020, 9(12): e015513. doi: 10.1161/JAHA.119.015513
    [44] Qu D, Guo H, Xu Y. Effects of tranilast on inflammasome and macrophage phenotype in a mouse model of myocardial infarction[J]. J Interferon Cytokine Res, 2021, 41(3): 102 – 110. doi: 10.1089/jir.2020.0208
    [45] Quagliariello V, Bonelli A, Caronna A, et al. SARS-CoV-2 infection: NLRP3 inflammasome as plausible target to prevent cardiopulmonary complications?[J]. Eur Rev Med Pharmacol Sci, 2020, 24(17): 9169 – 9171. doi: 10.26355/eurrev_202009_22867
    [46] Nolan RA, Reeb KL, Rong Y, et al. Dopamine activates NF-κB and primes the NLRP3 inflammasome in primary human macrophages[J]. Brain Behav Immun Health, 2020, 2: 100030. doi: 10.1016/j.bbih.2019.100030
    [47] Liu J, Jin Y, Wang B, et al. Dopamine D1 receptor alleviates doxorubicin-induced cardiac injury by inhibiting NLRP3 inflammasome[J]. Biochem Biophys Res Commun, 2021, 561: 7 – 13. doi: 10.1016/j.bbrc.2021.04.098
    [48] Chen JJ, Chen J, Jiang ZX, et al. Resolvin D1 alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 signaling pathway[J]. J Biol Regul Homeost Agents, 2020, 34(5). doi: 10.23812/20-392-A
    [49] Yarmohammadi F, Hayes AW, Karimi G. Possible protective effect of resolvin D1 on inflammation in atrial fibrillation: involvement of ER stress mediated the NLRP3 inflammasome pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021, 394(8): 1613 – 1619. doi: 10.1007/s00210-021-02115-0
    [50] 何鸿宾,江 维. NLRP3炎症小体抑制剂研究进展[J]. 中国科学技术大学学报, 2018, 48(10): 801 – 809. doi: 10.3969/j.issn.0253-2778.2018.10.006
    [51] Lu C, Chen C, Chen A, et al. Oridonin attenuates myocardial ischemia/reperfusion injury via downregulating oxidative stress and NLRP3 inflammasome pathway in mice[J]. Evid Based Complement Alternat Med, 2020, 2020: 7395187. doi: 10.1155/2020/7395187
    [52] Liu M, Li F, Huang Y, et al. Caffeic acid phenethyl ester ameliorates calcification by inhibiting activation of the AKT/NF-κB/NLRP3 inflammasome pathway in human aortic valve interstitial cells[J]. Front Pharmacol, 2020, 11: 826. doi: 10.3389/fphar.2020.00826
  • 加载中
计量
  • 文章访问数:  45
  • HTML全文浏览量:  7
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-06-14
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回