[1] |
魏 波, 郝广华. 可溶性血管粘附蛋白-1在原发性高血压患者外周血中的表达及临床意义[J]. 临床医学研究与实践, 2019, 4(26): 132 – 134. doi: 10.19347/j.cnki.2096-1413.201926056
|
[2] |
王晓宇, 顾 宇, 冉晨光, 等. 老年高血压患者外周血内脂素水平变化与氧化应激及促炎因子的关系[J]. 中国老年学杂志, 2017, 37(9): 2161 – 2163. doi: 10.3969/j.issn.1005-9202.2017.09.034
|
[3] |
王青梅, 冯玉宝, 李永玲, 等. 降压治疗对原发性高血压患者血压及血清IL-6、TNF-α季节性变异的影响[J]. 中华临床医师杂志(电子版), 2015, 9(23): 55 – 59. doi: 10.3877/cma.j.issn.1674-0785.2015.23.014
|
[4] |
Yu B, Sladojevic N, Blair JE, et al. Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening[J]. Expert Opin Ther Targets, 2020, 24(1): 47 – 62. doi: 10.1080/14728222.2020.1712593
|
[5] |
Deng Z, Jia Y, Liu H, et al. RhoA/ROCK pathway: implication in osteoarthritis and therapeutic targets[J]. Am J Transl Res, 2019, 11(9): 5324 – 5331.
|
[6] |
Reiner DJ, Lundquist EA. Small GTPases[J]. WormBook, 2018, 2018: 1 – 65. doi: 10.1895/wormbook.1.67.2
|
[7] |
Kim JG, Islam R, Cho JY, et al. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway[J]. J Cell Physiol, 2018, 233(9): 6381 – 6392. doi: 10.1002/jcp.26487
|
[8] |
Liu M, Zhang Z, Sampson L, et al. RHOA GTPase controls YAP-mediated EREG signaling in small intestinal stem cell maintenance[J]. Stem Cell Reports, 2017, 9(6): 1961 – 1975. doi: 10.1016/j.stemcr.2017.10.004
|
[9] |
Lock FE, Ryan KR, Poulter NS, et al. Differential regulation of adhesion complex turnover by ROCK1 and ROCK2[J]. PLoS One, 2012, 7(2): e31423. doi: 10.1371/journal.pone.0031423
|
[10] |
Nakagawa O, Fujisawa K, Ishizaki T, et al. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice[J]. FEBS Lett, 1996, 392(2): 189 – 193. doi: 10.1016/0014-5793(96)00811-3
|
[11] |
Hartmann S, Ridley AJ, Lutz S. The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease[J]. Front Pharmacol, 2015, 6: 276. doi: 10.3389/fphar.2015.00276
|
[12] |
Jugdutt BI, Idikio HA. Apoptosis and oncosis in acute coronary syndromes: assessment and implications[J]. Mol Cell Biochem, 2005, 270(1-2): 177 – 200. doi: 10.1007/s11010-005-4507-9
|
[13] |
Surma M, Handy C, Chang J, et al. ROCK1 deficiency enhances protective effects of antioxidants against apoptosis and cell detachment[J]. PLoS One, 2014, 9(3): e90758. doi: 10.1371/journal.pone.0090758
|
[14] |
Komers R. Rho kinase inhibition in diabetic nephropathy[J]. Curr Opin Nephrol Hypertens, 2011, 20(1): 77 – 83. doi: 10.1097/MNH.0b013e32834131f8
|
[15] |
Zhou Q, Gensch C, Liao JK. Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease[J]. Trends Pharmacol Sci, 2011, 32(3): 167 – 173. doi: 10.1016/j.tips.2010.12.006
|
[16] |
Chen J, Wang H, Gao C, et al. Tetramethylpyrazine alleviates LPS-induced inflammatory injury in HUVECs by inhibiting Rho/ROCK pathway[J]. Biochem Biophys Res Commun, 2019, 514(1): 329 – 335. doi: 10.1016/j.bbrc.2019.04.135
|
[17] |
Wan B, Li Y, Sun S, et al. Ganoderic acid A attenuates lipopolysaccharide-induced lung injury in mice[J]. Biosci Rep, 2019, 39(5): BSR20190301. doi: 10.1042/BSR20190301
|
[18] |
Li B, Lin Q, Hou Q, et al. Alkannin attenuates lipopolysaccharide-induced lung injury in mice via Rho/ROCK/NF-κB pathway[J]. J Biochem Mol Toxicol, 2019, 33(7): e22323. doi: 10.1002/jbt.22323
|
[19] |
Chen T, Wang R, Jiang W, et al. Protective effect of astragaloside IV against paraquat-induced lung injury in mice by suppressing Rho signaling[J]. Inflammation, 2016, 39(1): 483 – 492. doi: 10.1007/s10753-015-0272-4
|
[20] |
张红涛, 刘玲玲, 于 洋, 等. Rho/ROCK信号通路在氢气改善脓毒症小鼠急性肺损伤中的作用[J]. 中华危重病急救医学, 2016, 28(5): 401 – 406. doi: 10.3760/cma.j.issn.2095-4352.2016.05.005
|
[21] |
张 静, 刘天荣, 薛克栋. 丹参对小鼠急性肺损伤的保护作用研究[J]. 临床急诊杂志, 2017, 18(2): 93 – 97. doi: 10.13201/j.issn.1009-5918.2017.02.004
|
[22] |
Huang Z, Nan C, Wang H, et al. Crocetin ester improves myocardial ischemia via Rho/ROCK/NF-κB pathway[J]. Int Immunopharmacol, 2016, 38: 186 – 193. doi: 10.1016/j.intimp.2016.05.025
|
[23] |
Ma W, Sze KM, Chan LK, et al. RhoE/ROCK2 regulates chemoresistance through NF-κB/IL-6/ STAT3 signaling in hepatocellular carcinoma[J]. Oncotarget, 2016, 7(27): 41445 – 41459. doi: 10.18632/oncotarget.9441
|
[24] |
Zhu L, Chen T, Chang X, et al. Salidroside ameliorates arthritis-induced brain cognition deficits by regulating Rho/ROCK/NF-κB pathway[J]. Neuropharmacology, 2016, 103: 134 – 142. doi: 10.1016/j.neuropharm.2015.12.007
|
[25] |
Deng X , Ma Z, Ma C, et al. Fasudil, an inhibitor of Rho-associated coiled-coil kinase, improves cognitive impairments induced by smoke exposure[J]. Oncotarget, 2016, 7(48): 78764 – 78772. doi: 10.18632/oncotarget.12853
|
[26] |
Uchida T, Honjo M, Yamagishi R, et al. The anti-inflammatory effect of ripasudil (K-115), a Rho kinase (ROCK) inhibitor, on endotoxin-induced uveitis in rats[J]. Invest Ophthalmol Vis Sci, 2017, 58(12): 5584 – 5593. doi: 10.1167/iovs.17-22679
|
[27] |
Hofni A, Shehata Messiha BA, Mangoura SA. Fasudil ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats: a possible role of Rho kinase[J]. Naunyn Schmiedebergs Arch Pharmacol, 2017, 390(8): 801 – 811. doi: 10.1007/s00210-017-1379-y
|
[28] |
Li H, Peng W, Jian W, et al. ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion[J]. Cardiovasc Diabetol, 2012, 11: 65. doi: 10.1186/1475-2840-11-65
|
[29] |
Takeda Y, Matoba K, Kawanami D, et al. ROCK2 regulates monocyte migration and cell to cell adhesion in vascular endothelial cells[J]. Int J Mol Sci, 2019, 20(6): 1331. doi: 10.3390/ijms20061331
|
[30] |
Wang C, Song S, Zhang Y, et al. Inhibition of the Rho/Rho kinase pathway prevents lipopolysaccharide-induced hyperalgesia and the release of TNF-α and IL-1β in the mouse spinal cord[J]. Sci Rep, 2015, 5: 14553. doi: 10.1038/srep14553
|
[31] |
Zhang WM, Cao P, Xin L, et al. Effect of miR-133 on apoptosis of trophoblasts in human placenta tissues via Rho/ROCK signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(24): 10600 – 10608. doi: 10.26355/eurrev_201912_19755
|
[32] |
赵克明, 鞠宝兆, 曲妮妮, 等. 加味小柴胡汤对哮喘大鼠Rho/Rcok信号传导通路的影响[J]. 世界中西医结合杂志, 2017, 12(4): 500 – 503. doi: 10.13935/j.cnki.sjzx.170413
|
[33] |
John GR, Chen L, Rivieccio MA, et al. Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis[J]. J Neurosci, 2004, 24(11): 2837 – 2845. doi: 10.1523/JNEUROSCI.4789-03.2004
|
[34] |
Campos SB, Ashworth SL, Wean S, et al. Cytokine-induced F-actin reorganization in endothelial cells involves RhoA activation[J]. Am J Physiol Renal Physiol, 2009, 296(3): F487 – F495. doi: 10.1152/ajprenal.00112.2008
|
[35] |
陈 迪, 袁天翊, 陈俞材, 等. 新型Rho激酶抑制剂——DL0805-1通过抑制ROCK通路减轻肺动脉高压大鼠肺损伤及血管病变[J]. 中国药理学与毒理学杂志, 2019, 33(10): 809.
|
[36] |
韦君翔, 邹 敏, 蒋文琳, 等. Rho/ROCK信号通路对重症肌无力患者外周血单核细胞IL-17A和IL-23的作用[J]. 广西医科大学学报, 2020, 37(10): 1778 – 1783. doi: 10.16190/j.cnki.45-1211/r.2020.10.004
|