• 中国科技核心期刊
  • 中文科技期刊数据库刊源
  • 中国科技论文统计源期刊
  • 美国化学文摘社《化学文摘》刊源
Volume 34 Issue 3
May  2022
Turn off MathJax
Article Contents
Chen-yue MA, Meng CHAI, Hai-tao ZHANG. Current research on mechanism of IL-37 inhibiting calcification[J]. Chinese Heart Journal, 2022, 34(3): 352-355. doi: 10.12125/j.chj.202107017
Citation: Chen-yue MA, Meng CHAI, Hai-tao ZHANG. Current research on mechanism of IL-37 inhibiting calcification[J]. Chinese Heart Journal, 2022, 34(3): 352-355. doi: 10.12125/j.chj.202107017

Current research on mechanism of IL-37 inhibiting calcification

doi: 10.12125/j.chj.202107017
  • Received Date: 2021-07-08
  • Accepted Date: 2021-12-27
  • Rev Recd Date: 2021-12-08
  • Publish Date: 2022-05-26
  • IL-37, a novel anti-inflammatory factor, has recently been shown to protect against vascular calcification and arteriosclerosis, as well as other calcification reactions such as valve calcification. IL-37 can inhibit the inflammatory reaction and the autoimmune reaction, and it also has some effect on the differentiation of osteoblasts. IL-37 may be a new target to slow down or even treat vascular calcification-related cardiovascular diseases. This article reviews the specific mechanism of IL-37 inhibiting calcification.

     

  • loading
  • [1]
    Nold MF, Nold-Petry CA, Zepp JA, et al. IL-37 is a fundamental inhibitor of innate immunity[J]. Nat Immunol, 2010, 11(11): 1014 – 1022. doi: 10.1038/ni.1944
    [2]
    Teng X, Hu Z, Wei X, et al. IL-37 ameliorates the inflammatory process in psoriasis by suppressing proinflammatory cytokine production[J]. J Immunol, 2014, 192(4): 1815 – 1823. doi: 10.4049/jimmunol.1300047
    [3]
    Siltari A, Vapaatalo H. Vascular calcification, vitamin K and warfarin therapy - possible or plausible connection?[J]. Basic Clin Pharmacol Toxicol, 2018, 122(1): 19 – 24. doi: 10.1111/bcpt.12834
    [4]
    Chai M, Ji Q, Zhang H, et al. The protective effect of interleukin-37 on vascular calcification and atherosclerosis in apolipoprotein e-deficient mice with diabetes[J]. J Interferon Cytokine Res, 2015, 35(7): 530 – 539. doi: 10.1089/jir.2014.0212
    [5]
    Zhou P, Li Q, Su S, et al. Interleukin 37 suppresses m1 macrophage polarization through inhibition of the notch1 and nuclear factor kappa B pathways[J]. Front Cell Dev Biol, 2020, 8: 56. doi: 10.3389/fcell.2020.00056
    [6]
    Rafieian-Kopaei M, Setorki M, Doudi M, et al. Atherosclerosis: process, indicators, risk factors and new hopes[J]. Int J Prev Med, 2014, 5(8): 927 – 946.
    [7]
    Schiro A, Wilkinson FL, Weston R, et al. Endothelial microparticles as conveyors of information in atherosclerotic disease[J]. Atherosclerosis, 2014, 234(2): 295 – 302. doi: 10.1016/j.atherosclerosis.2014.03.019
    [8]
    Boraschi D, Lucchesi D, Hainzl S, et al. IL-37: a new anti-inflammatory cytokine of the IL-1 family[J]. Eur Cytokine Netw, 2011, 22(3): 127 – 147. doi: 10.1684/ecn.2011.0288
    [9]
    Xie Y, Li Y, Cai X, et al. Interleukin-37 suppresses ICAM-1 expression in parallel with NF-kappaB down-regulation following TLR2 activation of human coronary artery endothelial cells[J]. Int Immunopharmacol, 2016, 38: 26 – 30. doi: 10.1016/j.intimp.2016.05.003
    [10]
    Kritas SK, Gallenga CE, D Ovidio C, et al. Impact of mold on mast cell-cytokine immune response[J]. J Biol Regul Homeost Agents, 2018, 32(4): 763 – 768.
    [11]
    Kapelouzou A, Kontogiannis C, Tsilimigras DI, et al. Differential expression patterns of toll like receptors and interleukin-37 between calcific aortic and mitral valve cusps in humans[J]. Cytokine, 2019, 116: 150 – 160. doi: 10.1016/j.cyto.2019.01.009
    [12]
    Akahori H, Tsujino T, Masuyama T, et al. Mechanisms of aortic stenosis[J]. J Cardiol, 2018, 71(3): 215 – 220. doi: 10.1016/j.jjcc.2017.11.007
    [13]
    Wong BW, Meredith A, Lin D, et al. The biological role of inflammation in atherosclerosis[J]. Can J Cardiol, 2012, 28(6): 631 – 641. doi: 10.1016/j.cjca.2012.06.023
    [14]
    Lotfy H, Moaaz M, Moaaz M. The novel role of IL-37 to enhance the anti-inflammatory response of regulatory T cells in patients with peripheral atherosclerosis[J]. Vascular, 2020, 28(5): 629 – 642. doi: 10.1177/1708538120921735
    [15]
    Arce-Sillas A, Álvarez-Luquín DD, Tamaya-Domínguez B, et al. Regulatory T cells: molecular actions on effector cells in immune regulation[J]. J Immunol Res, 2016, 2016: 1720827. doi: 10.1155/2016/1720827
    [16]
    Mor A, Planer D, Luboshits G, et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2007, 27(4): 893 – 900. doi: 10.1161/01.ATV.0000259365.31469.89
    [17]
    Wang DW, Dong N, Wu Y, et al. Interleukin-37 enhances the suppressive activity of naturally occurring CD4(+)CD25(+) regulatory T cells[J]. Sci Rep, 2016, 6: 38955. doi: 10.1038/srep38955
    [18]
    Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease[J]. Circulation, 2008, 117(22): 2938 – 2948. doi: 10.1161/CIRCULATIONAHA.107.743161
    [19]
    Yang WW, Guo B, Jia WY, et al. Porphyromonas gingivalis-derived outer membrane vesicles promote calcification of vascular smooth muscle cells through ERK1/2-RUNX2[J]. FEBS Open Bio, 2016, 6(12): 1310 – 1319. doi: 10.1002/2211-5463.12151
    [20]
    Engelse MA, Neele JM, Bronckers AL, et al. Vascular calcification: expression patterns of the osteoblast-specific gene core binding factor alpha-1 and the protective factor matrix gla protein in human atherogenesis[J]. Cardiovasc Res, 2001, 52(2): 281 – 289. doi: 10.1016/S0008-6363(01)00375-3
    [21]
    Zeng Q, Song R, Fullerton DA, et al. Interleukin-37 suppresses the osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice[J]. Proc Natl Acad Sci U S A, 2017, 114(7): 1631 – 1636. doi: 10.1073/pnas.1619667114
    [22]
    Zeng Q, Song R, Ao L, et al. Notch1 promotes the pro-osteogenic response of human aortic valve interstitial cells via modulation of ERK1/2 and nuclear factor-kappaB activation[J]. Arterioscler Thromb Vasc Biol, 2013, 33(7): 1580 – 1590. doi: 10.1161/ATVBAHA.112.300912
    [23]
    Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability[J]. Circulation, 2001, 104(14): 1598 – 1603. doi: 10.1161/hc3901.096721
    [24]
    Fantuzzi G, Puren AJ, Harding MW, et al. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice[J]. Blood, 1998, 91(6): 2118 – 2125. doi: 10.1182/blood.V91.6.2118
    [25]
    Chandrasekar B, Mummidi S, Mahimainathan L, et al. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin[J]. J Biol Chem, 2006, 281(22): 15099 – 15109. doi: 10.1074/jbc.M600200200
    [26]
    Mallat Z, Corbaz A, Scoazec A, et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability[J]. Circ Res, 2001, 89(7): E41 – E45. doi: 10.1161/hh1901.098735
    [27]
    Li JM, Eslami MH, Rohrer MJ, et al. Interleukin 18 binding protein (IL18-BP) inhibits neointimal hyperplasia after balloon injury in an atherosclerotic rabbit model[J]. J Vasc Surg, 2008, 47(5): 1048 – 1057. doi: 10.1016/j.jvs.2007.12.005
    [28]
    Bufler P, Gamboni-Robertson F, Azam T, et al. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide[J]. Biochem J, 2004, 381(Pt 2): 503 – 510. doi: 10.1042/BJ20040217
    [29]
    Nold-Petry CA, Lo CY, Rudloff I, et al. IL-37 requires the receptors IL-18Ralpha and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction[J]. Nat Immunol, 2015, 16(4): 354 – 365. doi: 10.1038/ni.3103
    [30]
    Li J, Zhai Y, Ao L, et al. Interleukin-37 suppresses the inflammatory response to protect cardiac function in old endotoxemic mice[J]. Cytokine, 2017, 95: 55 – 63. doi: 10.1016/j.cyto.2017.02.008
    [31]
    Steinman RM, Banchereau J. Taking dendritic cells into medicine[J]. Nature, 2007, 449(7161): 419 – 426. doi: 10.1038/nature06175
    [32]
    Bobryshev YV. Dendritic cells and their role in atherogenesis[J]. Lab Invest, 2010, 90(7): 970 – 984. doi: 10.1038/labinvest.2010.94
    [33]
    Ji Q, Meng K, Yu K, et al. Exogenous interleukin 37 ameliorates atherosclerosis via inducing the Treg response in ApoE-deficient mice[J]. Sci Rep, 2017, 7(1): 3310. doi: 10.1038/s41598-017-02987-4
    [34]
    Liu T, Liu J, Lin Y, et al. IL-37 inhibits the maturation of dendritic cells through the IL-1R8-TLR4-NF-kappaB pathway[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(10): 1338 – 1349. doi: 10.1016/j.bbalip.2019.05.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (58) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return